FP2 Maclaurins Expansion

1. June 2010 qu. 2

It is given that $\mathrm{f}(x)=\tan ^{-1}(1+x)$.
(i) Find $f(0)$ and $f^{\prime}(0)$, and show that $\mathrm{f}^{\prime \prime}(0)=-\frac{1}{2}$.
(ii) Hence find the Maclaurin series for $\mathrm{f}(x)$ up to and including the term in x^{2}.
2. June 2009 qu. 3
(i) Given that $\mathrm{f}(x)=\mathrm{e}^{\sin x}$, find $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0)$.
(ii) Hence find the first three terms of the Maclaurin series for $\mathrm{f}(x)$.
3. Jan 2009 qu. 1
(i) Write down and simplify the first three terms of the Maclaurin series for $\mathrm{e}^{2 x}$.
(ii) Hence show that the Maclaurin series for $\ln \left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)$ begins $\ln a+b x^{2}$, where a and b are constants to be found.
4. June 2008 qu. 7

It is given that $\mathrm{f}(x)=\tanh ^{-1}\left(\frac{1-x}{2+x}\right)$, for $x>-\frac{1}{2}$.
(i) Show that $\mathrm{f}^{\prime}(x)=-\frac{1}{1+2 x}$, and find $\mathrm{f}^{\prime \prime}(x)$.
(ii) Show that the first three terms of the Maclaurin series for $\mathrm{f}(x)$ can be written as $\ln a+b x+c x^{2}$, for constants a, b and c to be found.
5. Jan 2008 qu. 1

It is given that $\mathrm{f}(x)=\ln (1+\cos x)$.
(i) Find the exact values of $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$.
(ii) Hence find the first two non-zero terms of the Maclaurin series for $\mathrm{f}(x)$.
6. June 2007 qu. 2
(i) Given that $\mathrm{f}(x)=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$, show that $\mathrm{f}(x)=\frac{1}{2} \sqrt{2}(\sin 2 x+\cos 2 x)$
(ii) Hence find the first four terms of the Maclaurin series for $\mathrm{f}(x)$. [You may use appropriate results given in the List of Formulae.]
7. Jan 2007 qu. 1

It is given that $\mathrm{f}(x)=\ln (3+x)$.
(i) Find the exact values of (0) and $f^{\prime}(0)$, and show that $\mathrm{f}^{\prime \prime}(0)=-\frac{1}{9}$.
(ii) Hence write down the first three terms of the Maclaurin series for $\mathrm{f}(x)$, given that

$$
\begin{equation*}
-3<x \leq 3 . \tag{2}
\end{equation*}
$$

8. June 2006 qu. 1

Find the first three non-zero terms of the Maclaurin series for $(1+x) \sin x$, simplifying the coefficients.
9. June 2006 qu. 2
(i) Given that $y=\tan ^{-1} x$, prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$.
(ii) Verify that $y=\tan ^{-1} x$ satisfies the equation $\quad\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$.
10. Jan 2006 qu. 1
(i) Write down and simplify the first three non-zero terms of the Maclaurin series for

$$
\begin{equation*}
\ln (1+3 x) \tag{3}
\end{equation*}
$$

(ii) Hence find the first three non-zero terms of the Maclaurin series for $\mathrm{e}^{x} \ln (1+3 x)$, simplifying the coefficients.
11. June 2010 qu. 3

Given that the first three terms of the Maclaurin series for $(1+\sin x) \mathrm{e}^{2 x}$ are identical to the first three terms of the binomial series for $(1+a x)^{n}$, find the values of the constants a and n. (You may use appropriate results given in the List of Formulae (MF1).)

